
PM!! v.S.S.R.,vol.52,No.l,pp.59-62,1988 0021-8928/88 $10.00+0.00 

Printed in Great Britain 01989 Pergamon Press plc 

ELIMINATION OF EDGE RUPTURE CAUSED BY THE 
OF FLOW PULSATIONS* 

EFFECT 

S.N. TIMOSHIN 

The possibility of eliminating boundary-layer (BL) separation at the 
leading edge of a slender profile is studied using high-frequencyharmonic 
pulsations in the velocity of the oncoming flow near some mean value. 
The pulsation period is assumed to be small since the Strouhal number is 
much greater than 1. In this case the BL is divided into a narrow 
non-stationary Stokes layer and an external part of the usual width, that 
is inversely proportional to the square root of the Reynolds number /l/. 
The non-linearity of the equations of motion leads to the fact that on 
the external boundary of the Stokes layer a weak stationary motion is 
induced that for the exterior part of the BL manifests itself as the 
effect of slippage at the wall. The rate of slippage is proportional to 
the pressure gradient at the BL without pulsations i.e. directed down- 
stream on a part of the adverse pressure gradient. Thus, we can expect 
that the presence of high-frequency pulsations in the flow increases the 
range of variation of angles of attack of a profile in which the flow 
around the leading edge proceeds without rupture of the BL. An equality 
is deduced that allows this range to be estimated. 

1. Statement of the problem. Equations for averaged flow. Consider the flow 
round a thin profile with parabolic leading edge by a uniform flow of an incompressible fluid 
with velocity iJ, (i i- e cos t). where Tf/(2n) is the time, Tisthe period and (J is the 
amplitude of the velocity of the pulsations. We assume that the radius of curvature of the 
leading edge L is small compared with the chord profile. We shall restrict ourselves to the 
analysis of the flow in the neighbourhood of the leading edge. For large Reynolds numbers 
Re = U&v_' a narrow boundary layer is formed very close to the rigid surface. In a curvi- 
linear orthogonal system of coordinates Lz, Re”lnLy, connected to the flow surface (Fig.l), 
the movement of the fluid at the BL is described by a traditional boundary value problem of 
the form 

/h+_ Here Re"h LU,$ is the stream functionand S' = 2nLU,;T' 
istheStrouhalnumber.The function f(r;k) defines the velocity 

. distribution at the exterior edge of the boundary layer in a 
flow without pulsations. The velocity on the exterior boundary 

Fig.1 
depends both on the longitudinal coordinate t and the dimen- 
sionless parameter k that characterizes the degree of asymmetry 

of the flow and is linearly related to the angle of attack of the profile a (for an asymmetric 
profile with chord b we have k = a (2b/L)'l-). In accordance with /2/, f(z, k) = (z + k)(z* + I)-‘/., 
where z is the distance from the axis of the parabola to a point on the surface with coordi- 
nate 2. 

If (JI 0, a regular solution of (1.1) exists if 0< k<k,= 1.1556 /3/. If k = k, 
the solution has an extended singularity in the section Z= 10 = 8.37; if k>k,, then the 
solution contains a Gol"dstei.nsingularity/4/. Suppose the amplitude of the fluctuations is 
not zero and, furthermore, the Strouhal number is large. We shall assume that there exists 
a solution that is periodic with respect to time. With a view to reducing the volume of 
calculations we shall consider a typical range of strong fluctuations that holds if u = Sa,. 
or = O(l), s> i. In this case the solution of (1.1) at the main part of the BL (v - 1) can 
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be represented in the form 

cp = Sa,yf cos t -1 $I + s-Q& + s-v, -+ 0 (s-3) (1.2) 

Putting (1.2) in Eq.Cl.1) we find that the general solution for the second term can be 
represented in the form $I =: Ip,(z, y)i-(PrI(z,f). The function $,, characterizesthedisplacing 
effect of the Stokes layer and will be found from the conditions for combining with a 
solution in the domain y - S-‘. To determine the stationary component of the solution $d it 
is necessary to consider the next termsinthe expansion (1.2). The general solution of the 
equation for the third term has the form 

Here and later the derivative of a function with respect to its argument will be denoted 
by a prime. The functions rpl0 and $¶I are still arbitrary at this stage of the solution. 

For the next term of the expansion (1.2) we have the equation 

Below it will be shown that the average value of the function & over the period is zero. 
Therefore, the necessary and sufficient condition for the function &pJ~9y to be periodic with 
respect to time takes the form RI@,] = 0, i.e. the averaged motion in the main approximation 
is determined by the BL equations with the same pressure gradient as in a flow without fluctu- 
ations. 

Expansion (1.2) will be uniformly suitable with respect to its longitudinal coordinate 
only in the case when the coefficients of the expansion and their derivativesofthenecessary 
order are continuous in r. The least "dangerous" in this relation is the averaged motion, 
since it is described by a Prandtl number with given pressure gradient. The equation for the 
function 0. requires specific boundary conditions. The condition as y+ + 00 follows from 
(1.1) and has the form @,/ay +f(r;k). The conditions on the rigid surface are obtained as a 
result of combining (1.2) with the solution on the Stokes layer, on which Y = Sy = 0 (1). 
Herethestream function can be represented in the form 

J, = Yy, (I, Y, t) + S-T, (x, Y, f) + 0 (S-2) (1.3) 

The function Y, is a solution of the classical Stokes problem with a parametric dependence 
on the longitudinal coordinate 

Y, = I/.& ]e"cp, + c. c.], ‘po=Y- i-‘/g (1 - exp (-Yi’j.)) 

The motion C.C. is used for a complex-conjugate expression. The combination of the 
solution on the Stokes layer with the solution in the domain y- I gives I&, = --a,~cos(t - 
R/4). The problem for the next coefficient of expansion (1.3) has the form 

Here YO* is the complex-conjugate function to 'pO. The solution of (1.4) is: 

Y, = ‘/,a,‘ff’ l@%p,, (Y) + cp,, (Y) + c. c.1 

Since averaged motion is of most interest, we can restrict ourselves to considering the 
function 'p,,. After transformations we obtain 

'pII‘ = -V, - 7i/2 + I/, (1 - i) exp (--2’/*Y) + (1 + 3i - 
Yi-‘n) exp (-i’/*Y) + i exp (-(-f)'W) 

Note that 'pl,'+ - (3 + 7i)/2 as ,Y --c + co, i.e. a certain stationary flow is induced on 
the exterior boundary of the Stokes layer. Matching of the two-term expansion (1.3) with 
expansion (1.2) shows that the averaged motion on the main part of the BL must satisfy the 
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slippage condition on the wall 

-I& = 0. ag#/ar/ = ---s/‘lJl*fj' (I/ = 0) 

Combining everything we have said above relating to the averaged flow in the domain 
y- i, we arrive at the boundary value problem 

The direction of the velocity of slippage is shown by arrows in Fig-l. The velocity of 
slippage becomes zero at the leading critical point 5 = O(f = 0), at the maximum point of 
the function f (the point Ml and asymptotically approximates to zero as Z'zt~ (f-*1). 
Downstream with respect to the flow from the point M we have j'< 0 (an unfavourable 
pressure gradient), therefore the slippage velocity in this part is directed towards the same 
side as the external flow. 

Numerical solution of (1.5) presents serious difficulties because in the defined part of 
the BL the slippage velocity is directed along the opposite direction to the external flow. 
However, the problem becomes simpler if the effective fluctuation amplitude ci, and thus the 
slippage velocity also, are small. 

2. A boundary layer with slow slippage. suppose ur< 1. We can expect that the 
flow at the BL remains unbroken if the angle of attack exceeds the critical value by an amount 
of the same order of smallness as that of the slippage velocity. Putting k -k, = O(ul*) we 
can represent the solution of (1.5) in the form 

9,. = % (2, Y) + (k - k,,) US (2, Y) + a,'@, (2, Y)+ 0 (u,‘) 

f (5; k) = fo (r) + (k - k,) fi (s) + 0 (cl') 

The function CD0 defines an extended singular solution at the BL without slippage /4/. 
For the next terms of the expansion we have the boundary value problems 

0, = 0, SD&/ = -‘/,fJo:(l,, (y = 0) 

acPJ8y-t f& (y-+ + m), i = i, 2 
61, = i (f = j); 611 = 0 (i +=f) 

The solution of the boundary value problems for the functions Q. and @r were studied 
in /4/. The problem for the function Qs, has the solution: 

The last result can easily be generalized to the case of an arbitrary distribution of 
the slippage velocity with respect to a rigid surface, 

All the functions (D, (i= 0,1,2) have a singularity in the section z = zo, where the 
surface friction force in the main approximation is equal to zero. The nature of the 
singularities ofthefunctions @, and (D, is known /4/ and the corresponding result for Q 
follows from (2.1). It turns out that if A, =I, (MO (Q). then as 2-+z,-0 at the BL 
any sublayer in which q'- #(z, -z)-%= O(1) is separated. The representationofthe solution 
in the sublayer has the form 

(0, = ‘i, (r0 - tpa,q’ f ‘/* (20 - rpuor(* -I- 0 ((zo - 49 

@a = v, (IO - z)‘ks# + 0 ((I, - zp 

(0, = ‘I, (2, - z)-w*“n,-4p + 0 ((te - .TP) 

=0 = o,ooi35, cl1 = --1,24 

Note that the coefficient of the function @, before the singular term depends on the 
slippage velocity only at the point rO. The singularity in the solution is smoothed out in 
the small domain t - t, = air,, y = a,'t*~~, (tr, k) = O(i) where 

(9, = '/,o,"*h,y,' + u,*'q~,'A (q) -I- . . . 
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A solution can be 
virtue of the equality 

for all value of z1 if 

n (q) -- (‘/(aO*fl* + v”Ao* + */,a,a,a,-* (k - k,))‘,- 

obtained by the same method as in /4/. From the last relation, bY 
rJ = Sn, it soon follows that there exists a solution that is regular 

(2.2) 

This inequality defines the range of variation of the angles of attack of the profile 
that allow a fluctuating stream to have an unbroken flow around the leading edge. 

3. Concluding remarks. The main result of the paper, quantitatively expressed by 
relation (2.2), was obtained by means of a repeated passage to the limit in problem (1.1): 

initially it was assumed that u = SU,,U,- 1,S-t 00, then, in the equation for a stationary 

component flow, (II + 0. In such an approach the validity of (2.2) is established only for 
values of a/S that are not too small. In fact, the range of validity for (2.2) is quite 
wide. 

In this case, the the solution presented above is based on the fact that at the exterior 
boundary of the Stokes layer, the thickness of which is equal to O(S-*). a stationary slippage 

rate of magnitude O((a/S)*) is induced. The effect of slippage gives rise to a non-linear 
smoothing mechanism for a singularity in the solution for the problem of stationary motion in 
the main part of the BL. The non-linear domain has a length of x - z0 = O(a/S) and in this 
case the thickness of any sublayer for the stationary component flow is equal to 0 ((o/s)';*). 
The scheme derived only holds in the case when the equations for averaging over time and for 
an oscillating component flow are separated. For this it is necessary that the thickness of 
any sublayer for the stationary part of the flow should be much larger than the thickness of 
the Stokes layer: o> P. Thus, for large values of the Strouhal number S* in the range 

s-=<a< s the permissible variations of the angle of attack of the profile are defined by 
relation (2.2). 

Under experimental conditions high-frequency pulsations in an inflowing stream are usually 
created by an acoustic disturbance of the field of flow (for example /5/j. The effect of 
elimination of the flow separation that is observed in such cases from the leading edge of a 
profile is related to the generation of turbulence in the preseparated BL. Therefore, com- 
parison of the theory derived above with experimental data is not justified. However, it is 
possible to detect a certain similarity between the physical mechanisms that leadtoelimin- 
ation of the rupture in turbulent and laminar flows. In both cases the action of Reynolds 
stresses has an effect, i.e. values averaged over time of paired derivatives, consisting of 
the pulsating components of the velocity vector. Under the influence of the Reynoldsstresses 
a loading of the profile of average velocity occurs, as a result of which the BL is able to 
withstand a stronger increase in pressure. 

The analysis that has been carried out can be extended to other forms of periodic flows 
of BLs for largestrouhalnumbers: the flow round a profile with variable angle of attack, 
oscillations in the direction of a chord etc. Minor 
when the dependence of the parameters of the problem 
harmonic. 

The author wishes to thank V.V. Sychev and A.I. 
cussing the results. 
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